Le physicien Serge Haroche, prix Nobel de physique 2012

Serge Haroche CNRSLe physicien Serge Haroche, prix Nobel de Physique 2012.

Serge Haroche est spécialiste de physique atomique et d’optique quantique. Il est l’un des fondateurs de l’électrodynamique quantique en cavité, domaine qui permet, par des expériences conceptuellement simples, d’éclairer les fondements de la théorie quantique et de réaliser des prototypes de systèmes de traitement quantique de l’information.

Professeur au Collège de France depuis 2001, Serge Haroche dirige le groupe d’électrodynamique des systèmes simples au sein du laboratoire Kastler Brossel (École normale supérieure/Université Pierre et Marie Curie/CNRS/Collège de France).

Portrait de Serge Haroche.

Serge Haroche, physicien. D’abord intéressé par les mathématiques, Serge Haroche s’oriente très vite vers les sciences physiques. « J’étais fasciné par le fait que la Nature se comprend par des lois mathématiques et je fus vite attiré par la physique qui ajoutait aux mathématiques une contrainte majeure : celle du réel ». Il apprend la mécanique et les lois de Newton au moment même où est lancé le premier satellite artificiel dont il peut, avec son simple bagage théorique de lycéen, calculer la vitesse et l’orbite… un évènement qui conforte son choix.

Ainsi, lorsqu’il entre à l’École normale supérieure (ENS) à Paris en 1963, Serge Haroche sait qu’il veut faire de la physique. Le jeune chercheur veut comprendre, sur le plan fondamental, le lien entre atomes et lumière et appréhender ces éléments qui constituent l’essentiel du monde perceptible. A cette époque, physique atomique et optique quantique connaissent une profonde révolution, liée à la découverte des lasers et au développement de méthodes nouvelles de manipulation des atomes. Alfred Kastler et Jean Brossel viennent de mettre au point la méthode du pompage optique qui permet de manipuler l’état électronique interne des atomes. C’est dans l’effervescence stimulante du laboratoire de l’ENS qui porte leurs noms que Serge Haroche effectue sa thèse, sous la direction de Claude Cohen-Tannoudji. « Il m’a appris à jongler avec des atomes et des photons et m’a insufflé une passion qui ne m’a plus quittée pour la recherche et l’enseignement ».

À sa sortie de l’ENS, Serge Haroche intègre le CNRS ; ses recherches contribuent largement à réconcilier le monde microscopique quantique et le monde macroscopique classique. Dans les années 1970-80, il développe des méthodes nouvelles de spectroscopie laser basées sur l’étude des battements quantiques et de la superradiance. Puis, il s’intéresse aux atomes de Rydberg, des systèmes atomiques géants que la sensibilité aux micro-ondes rend particulièrement bien adaptés aux études fondamentales sur l’interaction matière-rayonnement. S’il faut trouver un fil directeur à sa carrière scientifique, Serge Haroche l’exprime ainsi : « Je me suis toujours attaché à réaliser au laboratoire des expériences impliquant des atomes et des photons dans des situations « exotiques » que l’on ne rencontre pas habituellement dans la nature. J’ai cherché à exploiter ces situations pour mieux comprendre des phénomènes fondamentaux, ou pour développer des outils nouveaux d’investigation de la matière ou du rayonnement. ».

Impliqué dans de nombreuses collaborations internationales, Serge Haroche partage sa vie entre l’Université Pierre et Marie Curie (Paris) et l’Université de Yale aux États-Unis où il est professeur de 1983 à 1993. Cette confrontation au système universitaire américain et à l’organisation de la recherche si différents du fonctionnement français se révèle être une aventure très enrichissante et fructueuse pour lui tant sur le plan scientifique qu’humain.

En acceptant de prendre la direction du Département de physique de l’ENS en 1994, Serge Haroche décide de vivre de manière permanente à Paris. Après 15 années de développements théoriques et expérimentaux, il met au point avec son équipe une nouvelle expérience utilisant des technologies mises au point au Centre de l’Énergie Atomique (CEA) et destinées à réaliser les cavités accélératrices du CERN. Grâce à ces outils, ils développent des miroirs en matériaux supraconducteurs qui ont des réflectivités fantastiques pour les microondes. Dans ces cavités, des photons ont survécu jusqu’à 500 millisecondes, un record mondial, permettant aux chercheurs d’analyser leur comportement et de les observer sans les détruire.

Depuis 2001, le pionnier de l’électrodynamique quantique en cavité occupe la Chaire de physique quantique au Collège de France, une mission qu’il trouve extrêmement stimulante pour la réflexion scientifique, la confrontation des points de vue et les progrès dans le développement de ses recherches. Aujourd’hui, le chercheur de 65 ans prône avec ferveur la nécessité de poursuivre la recherche fondamentale, notamment pour la mise au point des applications futures : « Depuis une cinquantaine d’années, les grandes découvertes basées sur la technologie quantique telles que le laser, le transistor, l’imagerie médicale par résonance magnétique… n’ont jamais été annoncées. Les scientifiques n’ont jamais prémédité l’usage de ces technologies avant leur création ». Quant à l’avenir du traitement quantique de l’information (ordinateurs et communications quantiques…) : « il est difficile de le prédire. Cependant, les progrès en matière de logique quantique réservent certainement beaucoup de surprises… »

Domaines de recherche de Serge Haroche.

Atome et lumière : quand les expériences de pensée deviennent réelles.
Décrire l’interaction des atomes avec le rayonnement, c’est s’intéresser, au niveau le plus fondamental, au monde de nos perceptions. Ce monde est fait d’atomes qui émettent, absorbent et diffusent la lumière, véhicule essentiel de l’information que nous recevons de notre environnement proche ou lointain. La compréhension profonde de l’interaction atome-lumière nous est venue de la théorie quantique qui a dévoilé, au début du siècle dernier, les lois étranges auxquelles obéissent à l’échelle microscopique la matière et le rayonnement. Cette théorie nous a révélé un monde contre-intuitif dans lequel les notions d’ondes et de particules se mêlent intimement. La lumière apparaît à la fois comme une onde continue et comme un ensemble de photons discrets. Quant aux atomes, ils se manifestent soit comme des particules localisées, soit comme des ondes de matière. Cette physique « étrange » se fonde sur un principe fondamental de superposition : un système microscopique peut en général exister à la fois dans plusieurs états possibles, pour ainsi dire suspendu entre différentes réalités classiques.

Dans les discussions qui ont conduit à l’élaboration de la théorie, ses fondateurs avaient pris l’habitude d’imaginer des expériences de pensée : ils manipulaient virtuellement des atomes et des photons isolés de leur environnement pour créer des situations illustrant directement les concepts quantiques. Au cours des vingt dernières années, ces expériences, longtemps rêvées, se sont enfin réalisées. Jongler avec des atomes et des photons et les faire interagir de manière contrôlée est devenu un champ très actif de recherche expérimentale en optique quantique. Serge Haroche a joué un rôle pionnier dans ce domaine de recherche. En parvenant à isoler un atome du monde extérieur dans une cavité aux parois presque idéalement réfléchissantes, il l’a forcé à interagir avec un champ élémentaire constitué au plus de quelques photons et a ainsi observé l’interaction atome-lumière sous son jour le plus fondamental. Les cavités électromagnétiques que son équipe utilise à l’École normale supérieure (Laboratoire LKB / ENS / UPMC / CNRS) pour piéger la lumière peuvent être considérées comme des réalisations de la fameuse « boîte à photons » jadis rêvée par Bohr et Einstein.

Décohérence d'un chat de Schrödinger
Décohérence d’un chat de Schrödinger

Le chat de Schrödinger, la décohérence et le problème de la mesure quantique.
Dans une expérience cruciale, Serge Haroche et son équipe de l’ENS (qu’il dirige avec ses collègues Jean-Michel Raimond et Michel Brune) ont utilisé un atome pour contrôler l’état d’un champ micro-onde contenant quelques photons. Suivant que l’atome se trouve dans l’un ou l’autre de deux états d’énergies différentes, le champ piégé dans la cavité oscille avec une phase donnée ou la phase opposée. En d’autres termes, les crêtes de l’onde électromagnétique de l’un des états du champ coïncident avec les creux de l’autre et inversement. Dans un raffinement remarquable de cette expérience, l’équipe de l’ENS a pu, en portant l’atome dans une superposition de ses deux états d’énergie, préparer le champ dans un état où il oscille avec ces deux phases opposées à la fois, une situation impossible à comprendre d’un point de vue classique, mais parfaitement légitime selon la loi quantique. De tels états étranges s’appellent « chats de Schrödinger » en référence à une fameuse expérience de pensée dans laquelle ce physicien avait imaginé qu’un chat, emprisonné dans une boîte avec un atome radioactif, pouvait être placé dans la situation inconfortable d’être suspendu de façon quantique entre la vie et la mort.

Dans la vie réelle, les chats sont bien sûr morts ou vivants, une porte est ouverte ou fermée et n’est jamais bizarrement suspendue entre ces deux états. C’est que le phénomène de la décohérence a joué son rôle. Sous l’effet du couplage avec leur environnement, les objets macroscopiques constitués d’un très grand nombre de particules voient leurs superpositions d’états disparaître très rapidement. L’ambiguïté quantique s’évanouit pour laisser place au monde classique de notre expérience quotidienne. L’équipe de l’ENS a pu suivre en temps réel ce phénomène de perte de cohérence quantique en observant au cours du temps l’évolution d’un « chat de Schrödinger » de quelques photons. Elle a montré que le temps de décohérence est d’autant plus court que le nombre de photons contenus dans le champ est plus grand. Ceci explique pourquoi les systèmes formés d’un nombre gigantesque de particules apparaissent toujours comme classiques, puisqu’on n’a pas en pratique le temps d’observer leur trop fugace existence quantique. Cette expérience montre de façon spectaculaire comment le comportement classique du monde macroscopique qui nous entoure émerge du monde quantique sous-jacent.

Les expériences de « chats de Schrödinger » intéressent aussi les physiciens parce qu’elles illustrent de façon idéale un aspect essentiel du mécanisme de la mesure. Alors qu’en physique classique, cette notion – l’acquisition d’information sur un système physique par son observation – ne pose aucun problème conceptuel, il n’en va pas de même dans le monde quantique. L’appareil de mesure, en se couplant au système observé, le perturbe nécessairement de façon essentielle. Dans l’expérience du chat photonique, la phase du champ micro-onde peut être vue comme l’aiguille d’un appareil qui mesure l’énergie de l’atome en pointant dans une direction ou dans l’autre suivant la valeur de cette énergie. Si l’atome mesuré est dans une superposition d’états, la création du chat de Schrödinger micro-onde fait que l’aiguille de mesure pointe à la fois dans deux directions opposées. La décohérence est alors le processus qui force en quelque sorte l’appareil à «choisir» et la mesure à se faire. L’expérience du « chat » de l’équipe de l’ENS met en évidence le mécanisme de décohérence de l’aiguille de mesure qui n’avait jusqu’alors été analysé que théoriquement. Le fait qu’après la décohérence, le choix final de la direction dans laquelle pointe l’aiguille se fasse au hasard (dans le monde microscopique, « Dieu joue au dés » disait Einstein) reste cependant un aspect irréductible de la physique quantique, confirmé mais non expliqué par l’expérience de l’ENS.

Une nouvelle façon de voir la lumière et un ancien paradoxe revisité.
Serge Haroche et son équipe ont réalisé récemment une autre série de travaux qui ont révolutionné la façon de compter les photons. Alors que les compteurs utilisés jusqu’à présent (y compris notre oeil) détruisent les photons qu’ils comptent, les chercheurs de l’ENS ont mis au point un procédé de détection « transparent » dans lequel les photons interagissent avec l’appareil de comptage sans être absorbés. Ici encore, l’expérience consiste à faire interagir le champ à mesurer, piégé dans une cavité, avec des atomes « sonde » traversant la cavité un à un et emportant avec eux, sans absorber l’énergie lumineuse, une empreinte de l’état du champ. L’information sur le nombre de photons est acquise progressivement, au fur et à mesure de la détection des atomes successifs, chacun apportant une contribution partielle à la détermination de l’état final du champ. Lorsque ultérieurement un photon disparaît, absorbé par les imperfections des miroirs de la cavité, l’énergie du champ subit une variation soudaine et discontinue, détectée par les atomes « sonde » qui la traversent. Ces sauts quantiques, processus fondamentaux de la dynamique quantique, n’avaient jamais été observés sur la lumière jusqu’à présent.

L’effet Zénon quantique est une autre manifestation spectaculaire de la théorie quantique que ces expériences ont récemment illustrée. Ce philosophe de l’Antiquité niait dans une argumentation paradoxale l’existence du mouvement d’une flèche puisque, disait-il, elle est « vue » immobile à chaque instant et qu’une succession d’immobilités ne peut résulter en un mouvement. Le raisonnement, basé sur une conception erronée du calcul infinitésimal, est manifestement faux en physique classique où le fait de voir un objet ne peut avoir aucun effet sur son mouvement. Il n’en est pas de même en physique quantique où l’observation influe sur l’objet mesuré. L’équipe de l’ENS a montré que l’évolution d’un champ que l’on cherche à injecter dans une cavité se trouve gelée si l’on compte à l’aide d’atomes « sonde » de façon répétée et non-destructive son nombre de photons. La physique quantique donne ainsi raison à Zénon, même si ce n’est pas pour la raison qu’il avait invoquée.

Des cavités et des atomes exceptionnels.
Simples et épurées dans leur principe, les expériences de l’ENS sont extraordinairement complexes sur le plan technique. Les cavités utilisées pour piéger les photons sont faites de miroirs supraconducteurs ultra–réfléchissants, les meilleurs miroirs réalisés à ce jour, qui font rebondir la lumière plus d’un milliard de fois avant qu’elle ne soit absorbée ou diffusée. Les photons parcourent ainsi environ quarante mille kilomètre -l’équivalent de la circonférence terrestre- entre les miroirs de la cavité, laissant amplement aux expérimentateurs le temps de les manipuler et de les observer de façon répétée.

Les atomes qui interagissent avec ces photons sont également très particuliers. Il s’agit d’atomes dans lesquels un électron a été porté sur une orbite circulaire très excitée et dont le rayon est plus de mille fois plus grand que la dimension d’un atome ordinaire dans son état fondamental. Ces systèmes atomiques géants, appelés atomes de Rydberg, ont été l’objet de nombreux travaux en physique atomique au cours des trente dernières années. Dans les années 1970, Serge Haroche a été un pionnier de ces études, démontrant dès cette époque l’extrême sensibilité de ces atomes aux micro-ondes et développant des méthodes expérimentales sophistiquées pour les préparer, les manipuler et les détecter.

Cavité électromagnétique en cours de montage
Cavité électromagnétique en cours de montage

Électrodynamique en cavité et information quantique.
Serge Haroche a également été le premier à avoir l’idée de coupler ces atomes de Rydberg à des cavités micro-ondes. Dans un environnement protégé des perturbations extérieures, il a réalisé, des conditions de couplage intense entre les atomes et le rayonnement dans lesquelles les effets quantiques se manifestent de façon spectaculaire. Dès la fin des années 1970, il a ainsi été l’un des initiateurs du domaine très actif de l’optique quantique que l’on appelle depuis l’Électrodynamique Quantique en Cavité (Cavity QED en anglais). Ce champ de recherche a connu depuis trente ans un développement considérable dans le monde entier. Les années 1980 ont vu la réalisation de micro-masers, lasers opérant dans le domaine micro-onde dans lesquels le milieu amplificateur n’est constitué que d’un seul atome. Aux expériences micro-ondes se sont ajoutées des études effectuées sur de la lumière visible avec des cavités optiques de dimensions sub-millimétriques couplées à des atomes dans leur état fondamental. Puis dans les années 1990, des travaux en physique des solides sur des systèmes tout intégrés ont été effectués. Ils incluaient des microcavités réalisées à l’aide d’empilements de couches semi-conductrices entre lesquelles des électrons piégés dans des boîtes quantiques font office d’atomes artificiels. Enfin, les années 2000 ont vu le développement de l’Électrodynamique quantique des circuits (circuit QED) : les cavités micro-ondes à miroirs supraconducteurs ont dès lors été remplacées par des résonateurs faits de conducteurs parallèles et les atomes de Rydberg par des jonctions supraconductrices se comportant comme de véritables systèmes quantiques à deux niveaux.

Au delà de la réalisation d’expériences de pensée testant les fondements de la physique quantique, l’électrodynamique en cavité joue un rôle important dans le développement de l’information quantique, la science cherchant à exploiter la logique étrange du monde quantique pour le traitement de l’information. Alors que dans les ordinateurs et les circuits de communication usuels l’information est codée dans des signaux électriques ou lumineux sous forme de « bits » classiques prenant deux valeurs 0 et 1 exclusives l’une de l’autre, l’information quantique se propose d’utiliser des « bits quantiques » ou « qubits » portés par des systèmes quantiques pouvant exister dans une superposition des états 0 et 1. Le principe de superposition enrichit ainsi considérablement les possibilités du calcul et de la communication. Les théoriciens ont montré que des machines jonglant avec de tels qubits pourraient effectuer certains calculs beaucoup plus rapidement que les ordinateurs actuels, ou encore rendre inviolable le secret de la communication d’information qui repose jusqu’à présent sur des protocoles classiques de cryptographie dont la sûreté absolue n’est pas démontrée.

Les deux miroirs de la boîte à photons de l'ENS
Les deux miroirs de la boîte à photons de l’ENS

Ces promesses théoriques stimulent de nombreux travaux expérimentaux à la recherche du meilleur candidat au rôle de qubit : atomes ou ions piégés, boîtes quantiques, jonctions supraconductrices peuvent être préparés et manipulés de façon à réaliser des systèmes quantiques à deux états. L’information peut être transportée entre ces qubits par des photons se propageant dans l’espace ou dans des fibres optiques. La connexion entre qubits matériels et photons est efficacement réalisée en incluant les qubits dans des cavités optiques ou des résonateurs micro-ondes. On construit ainsi des dispositifs où les méthodes de l’électrodynamique en cavité sont exploitées pour la réalisation d’opérations élémentaires nécessaires au traitement de l’information : portes quantiques dans lesquelles un « qubit contrôle » détermine l’état d’un « qubit cible » suivant les règles de la logique quantique autorisant les superpositions d’états, mémoire quantique copiant l’information quantique d’un qubit sur un autre pour la stocker transitoirement avant de l’utiliser ultérieurement, etc. L’équipe de l’ENS a démontré que de telles opérations étaient possibles en utilisant des atomes de Rydberg comme qubits et en les couplant entre eux via leur interaction commune avec le champ d’une cavité micro-onde supraconductrice. Les atomes de Rydberg, difficiles à produire et très fragiles, ne seront sans doute pas les qubits des appareils de demain, mais les opérations dont ils ont démontré la faisabilité sont reprises dans des dispositifs compacts où les qubits sont des atomes artificiels (boîtes quantiques ou jonctions supraconductrices) dont le maniement semble plus prometteur pour des applications pratiques.

Si l’ordinateur quantique reste encore un objectif lointain et incertain, il est déjà des domaines de la technologie « classique » où les méthodes de l’électrodynamique en cavité sont utilisées avec succès. Il s’agit par exemple de la réalisation de nouveaux types de lasers miniature opérant dans des cavités verticales fabriquées par dépôts de couches atomiques à la surface de matériaux semi-conducteurs (lasers VCSEL). Différentes sources lumineuses délivrant à la demande des photons uniques ont également été mises au point récemment en exploitant les effets spécifiques de l’électrodynamique en cavité. Ces sources seront sans doute intégrées un jour dans des dispositifs de cryptographie quantique. Signalons enfin l’utilisation de cavités traversées par un faisceau laser comme détecteurs non-destructifs d’atomes individuels. Ce nouveau procédé extrêmement sensible de diagnostic est à présent exploité pour compter des atomes ultra-froids dans plusieurs expériences de physique atomique.

Recherche fondamentale et appliquée sont indissociables.
Les recherches de Serge Haroche et de son équipe sont motivées par la curiosité pure, le besoin de comprendre de la façon la plus fondamentale possible les processus quantiques microscopiques de l’interaction matière-lumière. Pour rendre réelles les expériences de pensée illustrant ces processus, le groupe de l’ENS a dû dominer des méthodes expérimentales très complexes, au prix d’un effort continu et progressif rendu possible par un soutien récurrent en moyens matériels, et de la contribution du travail de générations d’étudiants en thèse et de post-docs exceptionnels. Ce type de recherche, qui doit nécessairement se poursuivre sur une longue période, n’est possible que dans de telles conditions. Appartenant au domaine de la recherche pure par excellence, ces travaux ne peuvent cependant se concevoir sans des allers et retours constants entre recherche fondamentale et appliquée. Ils ont été rendus possibles par les progrès immenses de la technologie au cours des vingt dernières années et, inversement, ils inspirent des avancées dans le développement de nombreux dispositifs nouveaux, présents ou à venir.

Le Laboratoire Kastler Brossel (LKB)
Le laboratoire est fondé en 1952 par Alfred Kastler (Médaille d’or du CNRS 1964, prix Nobel 1966) et Jean Brossel (Médaille d’or du CNRS 1984) sur le thème de l’interaction entre la lumière et la matière. Leurs travaux sur le pompage optique et leurs enseignements ont donné l’impulsion et créé la culture, à la base des recherches menées au laboratoire qui porte leur nom aujourd’hui. Le Laboratoire Kastler Brossel – LKB – est devenu un des acteurs majeurs de la physique fondamentale des systèmes quantiques dans le monde aujourd’hui. Il dépend du CNRS, de l’École normale supérieure et de l’Université Pierre et Marie Curie (Paris).
Multidisciplinaire, le LKB conduit aussi bien des recherches sur les interactions fondamentales ou les bases de la mécanique quantique que sur l’imagerie médicale. Toutes ses activités sont fortement reliées à la maîtrise par le laboratoire de l’interaction matière-rayonnement au niveau quantique.

  • Atomes froids
    Le développement spectaculaire des techniques de manipulation et de refroidissement d’atomes par des champs électromagnétiques (pour lesquelles Claude Cohen-Tannoudji du LKB a partagé le prix Nobel en 1997) a conduit à l’émergence d’un nouveau domaine : les gaz quantiques. Le laboratoire développe également la technologie des puces à atomes avec la perspective de progrès en physique fondamentale et d’applications potentielles utilisant ces technologies.
  • Information et optique quantique
    Le LKB s’intéresse à différents aspects liés aux concepts fondamentaux de la mécanique quantique et aux conséquences des fluctuations quantiques, étudiant l’intrication et la décohérence, la génération d’états non classiques, les limites de la mesure et leurs applications. C’est dans cette thématique que s’inscrivent les travaux de Serge Haroche et de son équipe (Cf. photo).
LKB
  • Atomes dans des milieux denses ou complexes
    Les atomes et le rayonnement constituent une sonde efficace de la matière dense. Les chercheurs du LKB les utilisent par exemple pour vérifier l’existence de l’état supersolide de l’hélium ou pour étudier des fluides hyperpolarisés.
  • Interface Physique–Biologie–Médecine
    En étroite collaboration avec des laboratoires de biologie et des services de médecine, le LKB développe de nouvelles méthodes de détection et d’imagerie (imagerie optique et par résonance magnétique) en les appliquant à l’étude de processus biologiques.
  • Tests des théories fondamentales
    Le laboratoire a aussi une activité importante dans le domaine de la mesure des constantes fondamentales et de tests des théories physiques fondamentales (électrodynamique quantique, gravitation, interaction forte). Il détient des records de précision dans la mesure de certaines constantes fondamentales. Le LKB est aussi leader dans la mission PHARAO/ACES1 qui enverra dans l’espace une horloge à atomes froids d’une précision inégalée pour tester les équations d’Einstein de décalage gravitationnel des fréquences.
    Avec une activité majeure de recherche fondamentale, le laboratoire ne néglige pas pour autant la recherche appliquée. Les travaux réalisés au LKB ont été à l’origine d’une start-up dans le domaine des micro-ondes. D’autre part, une de ses équipes est membre d’un institut Carnot2 sur les nano-technologies et démontre que des développements théoriques sur l’effet Casimir (force due à l’énergie du vide) influencent directement des recherches à visées technologiques.
    Le LKB bénéficie de l’environnement scientifique exceptionnel du département de physique de l’ENS. Celui-ci regroupe cinq laboratoires couvrant de nombreux domaines de recherche en physique fondamentale, des constituants ultimes de la matière aux structures cosmiques.
L'effet Zénon quantique
Observer un champ peut figer son évolution :
c’est l’effet Zénon quantique

Curriculum Vitae de Serge Haroche.

Serge Haroche est né le 11 septembre 1944 à Casablanca

Fonction de Serge Haroche au 9 octobre 2012:

  • Professeur au Collège de France depuis 2001, Chaire de physique quantique
  • Directeur du groupe d’électrodynamique des systèmes simples au LKB (ENS/UPMC/CNRS)

Études et diplômes de Serge Haroche :

  • École Normale Supérieure (ENS), 1963-1967 (Paris)
  • Doctorat de Troisième Cycle et Agrégation de Physique, 1967 (Paris)
  • Thèse d’Etat de Physique, 1971 (Paris)

Précédentes fonctions de Serge Haroche :

  • Attaché de recherches au CNRS, 1967-1971 (Paris)
  • Chargé de recherches au CNRS, 1971-1973 (Paris
  • Maître de recherches au CNRS, 1973-1975 (Paris)
  • Maître de conférences à l’École Polytechnique, 1973-1984 (Paris)
  • Professeur invité à l’Université de Stanford, 1972-1973, 1976 et 1979 (États-Unis)
  • Scientifique invité à l’Institut de Technologie du Massachusetts, M.I.T., 1979 (Cambridge, États-Unis)
  • Loeb lecturer et professeur invité à l’Université de Harvard, 1981 (Cambridge, États-Unis)
  • Professeur à l’Université de Yale à temps partiel, 1984-93 (New Haven, États-Unis)
  • Professeur de Physique à l’Université Pierre et Marie Curie, 1975-2001 (Paris)
  • Professeur à l’École normale supérieure, 1982 -2001 (Paris)
  • Membre de l’Institut universitaire de France, 1991-2001
  • Directeur du Département de Physique de l’École normale supérieure, 1994-2000

Prix et distinctions de Serge Haroche :

  • Prix Aimé Cotton, Société Française de Physique (1971)
  • Grand Prix de Physique Jean Ricard, Société Française de Physique (1983)
  • Einstein Prize for Laser Science (1988)
  • Humboldt Award, Allemagne (1992)
  • Michelson Medal of the Franklin Institute, Philadelphie, États-Unis (1993)
  • European Physical Society traveling lecturer (1993-94).
  • Tomassoni award, Université La Sapienza, Rome, Italie (2001)
  • Quantum Electronics Prize, Société européenne de physique (2002)
  • Quantum Communication Award of the International Organization for Quantum – Communication, Measurement and Computing et Université de Tamagawa, Japon (2002)
  • Charles Hard Townes Prize, Optical Society of America (2007)
  • Grande Croix de l’Ordre National du Mérite Scientifique, Brésil (2007).

 Serge Haroche est Membre de :

  • Société Française de Physique
  • Société Européenne de Physique (EPS)
  • Société Américaine de Physique (Fellow)
  • Académie des Sciences, Paris

Des témoignages :

Claude Cohen-Tannoudji, médaillé d’or du CNRS en 1996, Prix Nobel en 1997 et professeur honoraire au Collège de France, dirige l’équipe « atomes froids » du Laboratoire Kastler Brossel (CNRS/ENS/UPMC).
« La nouvelle de l’attribution de la Médaille d’Or du CNRS à Serge Haroche me remplit de joie. J’ai toujours éprouvé la plus grande admiration pour l’élégance de ses travaux, la profondeur de ses analyses, la clarté de ses exposés et son enthousiasme pour la recherche. Je considère comme un grand privilège de le compter parmi les tous premiers étudiants qui ont rejoint mon groupe de recherche au milieu des années 1960 pour y effectuer une thèse de doctorat. »

Professeur Theodor W.Hänsch, Prix Nobel de Physique en 2005, Université Ludwig-Maximilians à Munich et Institut Max-Planck d’optique quantique à Garching, Allemagne :
« During more than three decades of friendship, I have come to admire Serge Haroche as one of the deepest thinkers and most lucid expositors in the field of quantum optics. His exquisitely beautiful experiments on cavity quantum electrodynamics with Rydberg atoms and microwave photons in a superconducting resonator have become landmarks in the field of quantum physics and quantum information. They are greatly enriching the experimental foundations of central concepts of quantum mechanics, such as entanglement, quantum measurements, and decoherence. As lecturer and book author, he has been offering unparalleled insights to generations of researchers. The prestigeous Gold Medal of the CNRS is a fitting recognition for his truly outstanding achievements. »

Professeur Daniel Kleppner, Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Boston (Etats-Unis)
« Serge Haroche has opened a new window to the world of quantum physics, enabling us to observe fundamental quantum phenomena and to witness basic measurerment processes in ways previously inconceivable. With his students and associates he has carried out experiments of the most remarkable delicacy that elucidate the subtle connections between the observed and the observer and enable us to see with clarity phenomena such as decoherence and entanglement. His pioneering microwave atomic experiments in the subject now called cavity quantum electrodynamics helped to launch a field that is now being actively pursued in atomic optical regimes and with mechanical and electrical systems using condensed matter and photonic media. His papers and recent book with Jean-Michel Raimond are exemplary in their depth and clarity. Niels Bohr once argued that truth and clarity cannot be simultaneously achieved, but Serge Haroche’s work shows that they can be. »

Source de Presse :  CNRS

www.cnrs.fr

Author: Redaction